Emergence, Extinction of Massive Ancient Shark to be Explored with NSF Grant

October 1, 2018

Forty million years after dinosaurs went extinct, one of the largest predators that ever prowled Earth’s oceans emerged, feeding the imaginations of modern scientists and the nightmares of modern movie audiences.

Megalodon — the name means ‘giant tooth’ — appeared some 23 million years ago and reigned the seas for about 21 million years. In 400 million years of shark evolution, megalodon is the most massive shark species that ever lived, growing to 60 feet long, or three times the size of the largest of today’s great whites.

But megalodon went extinct about 2.5 million years ago, and UC Merced paleoecology Professor Sora Kim wants to know why.

Through a three-year project funded by a $204,000 grant from the National Science Foundation , Kim hopes to learn about the megalodon’s diet, habitat and physiology and whether they played a role in the shark’s disappearance. Kim’s team of co-investigators includes paleoclimatologist Michael Griffiths and environmental scientist Martin Becker, both from William Paterson University, paleobiologist Kenshu Shimada from DePaul University and marine scientist Robert Eagle from UCLA.

“There are many ideas about why the megalodon went extinct,” Kim said. “Scientists have argued that changes in the megalodon’s available prey base combined with climate change led to their demise. But these are just hypotheses. There have been no rigorous studies that demonstrate this conclusively.”

What makes the megalodon’s emergence, existence and ultimate extinction a mystery for the researchers is that the anatomy of these ancient sharks was much like that of modern sharks, with skeletons made of cartilage rather than bone. This feature — also common to rays and skates — distinguishes them from other vertebrates. But it means sharks don’t leave behind large fossilized remains like other animals with skeletons composed primarily of bone do. Bone is mineralized and fossilizes; cartilage doesn’t — at least not well.

Luckily for Kim and her colleagues, there’s an exception to the rule: Just like modern sharks, megalodon’s teeth were made of calcium phosphate, so the fossil record is replete with dental remains. Shark teeth are actually the most abundant vertebrate fossil, in part because a single shark sheds thousands of teeth in its lifetime, and the mineralized enameloid — similar to the enamel on mammals’ teeth – is extremely resistant to alteration.

Using fossilized teeth from different sites around the world that span megalodon’s time as the ocean’s apex predator, the researchers will use a suite of analytical methods not typically used in paleontology to probe them and improve understanding of the largest shark that ever swam Earth’s oceans.

“I’ll use stable isotope analysis and build a bridge between classical paleo and modern techniques,” Kim said.

Contact Us

Graduate Admissions:
Phone: (209) 228-4723
 
Graduate Funding:
Phone: (209) 228-4622
 
General Inquiries:
Phone: (209) 228-4723
Fax: (209) 228-6906
 
Mailing Address:
University of California, Merced
ATTN: Graduate Division
5200 N. Lake Road, SSB 310
Merced, CA 95343

 

 
University of California, Merced
 
The first new American research
university in the 21st century, with a
mission of research, teaching and service.
 
University of California, Merced
5200 North Lake Road
Merced, CA 95343
T: (209) 228-4400
 
University of California
Go to top